

Hanford Spent Nuclear Fuel

RL McCormack Fluor Hanford

October 20, 2004

Hanford Spent Nuclear Fuel

- K Basins Fuel Removal Progress
 - Fuel Removal Status
 - Follow-on Items
- Other Fuel Consolidation at Hanford Site
 - Shippingport Fuel
 - Fast Flux Test Facility Fuel
 - Commercial Origin Light Water Reactor Fuel
 - TRIGA Fuel
 - Miscellaneous Fuel

K Basins Fuel Removal

- Removal of 386th Multi-Canister Overpack from K Basins completed in October 2004
 - 252 Mark IV MCOs (some contain Mark IA fuel)
 - 133 Mark IA MCOs
 - 1 Single-Pass Production Reactor MCO
- Scrap processing initiated as part of fuel removal
 - Approximately 70,000 pounds of scrap collected
 - 66 Mark IV scrap baskets used (4 MCOs contain 2 scrap baskets)
 - 1 Mark IA scrap basket used
- Additional MCO(s) anticipated for fuel, scrap discovered during sludge removal
 - Minimum 1 scrap basket currently remaining

K Basins Fuel Removal

- Fuel Transfers from KE Basin to KW Basin completed
 - 370 FTS shipments
 - Over 3,600 fuel canisters
 - Over 50,000 fuel elements
- 259 Welded N Stamped MCOs completed
 - No defects to date

Recent Challenges Experienced

- Most degraded fuel saved for last
 - Treatment systems not designed for sludge processing
 - Fuel stuck in canisters
 - Fuel handling tedious
 - Water visibility frequently impacted
 - Airborne problems
- Equipment designed for MCO shipments from one basin
 - Many single-point failures

K Basins Fuel Removal

- Follow-on Items
 - Complete MCO Welding
 - Continue MCO Sampling/Monitoring
 - Disposition Short-stack MCOs
 - Package/Process Fuel Recovered from Sludge
 - Potential to Receive Discovered Fuel from B/C Reactors

Shippingport Fuel

- 72 PWR Core 2 Blanket Fuel Assemblies Received from Shippingport in 1978-1979. Placed in Wet Storage at T Plant Canyon
- Zircaloy clad, uranium oxide fuel (natural enrichment)

Current wet storage of PWR Core 2 blanket fuel assemblies at T Plant.

Shippingport Fuel

- Initiated fuel removal and transfer to the Canister Storage Building in August 2002
- Completed transfer of all fuel in 18 MCOs with modified shield plugs (Shippingport Spent Fuel Canisters) in September 2004

Below: Shippinort Spent Fuel Canister shipment in MCO Caskl

- Fuel dried at T Plant to commercial fuel drying standards (NUREG-1536)
- No repackaging planned for shipment to repository

Fast Flux Test Facility Fuel

- Off-load of FFTF fuel into Interim Storage Casks over 50% complete Interim Storage Casks stored at 200 Area Interim Storage Area
- Small quantity of FFTF spent fuel at Plutonium Finishing Plant; will be transferred later to CSB
- FFTF fuel at CSB and 200 Area ISA will be repackaged into DOE Standard Canisters for repository acceptance
- Sodium bonded fuel will be transferred to ANL-W for treatment

Right: Interim Storage Cask receipt at 200 Area Interim Storage Area

Commercial Origin Light Water Reactor

 Typical end of life PWR and BWR assemblies/pins; some commercial fuel experiments

Received at 324 Building 1976-1986 and stored in hot cells after studies completed

Due to 324 physical limitations, cost and schedule, use of NAC-1 casks selected for SNF interim storage

Commercial Origin LWR

- NAC-1 casks loaded and in storage at 200 Area Interim Storage Area
- One cask holds Rod Consolidation Assembly
- Current planning assumes repackaging into Standard Canister prior to shipment to repository

NRF TRIGA Fuel

- Fuel in storage at 200 Area Interim Storage Area since 2002
- Fuel will be repackaged in DOE Standard Canister for shipment to repository

NRF TRIGA Cask Shipment (right), RadVault for TRIGA Cask storage (below),

Miscellaneous Fuel

- OSU TRIGA and LAMPRE fuel planned to be packaged in DOE Standard Canisters prior to shipment to repository
- Disposition path for commercial origin Reactor Irradiated Nuclear Material (RINM) must be finalized.
 This RINM may be dispositioned as spent nuclear fuel

Right: EBRII Cask containing RINM being handled at 300 Area

